Dengancara di atas maka untuk menentukan suku ke-n dapat dicari dengan meneruskan pola yang ada. Namun demikian, untuk n yang besar misalnya n = 50, kita akan mengalami kesulitan, untuk itu akan kita pelajari bagaimana menentukan suku ke-ndengan menggunakan rumus Un Jadi suku ke-15 = 43 dan suku ke-20 = 58. b. Barisan Geometri.
Menentukansuku atau bilangan selanjutnya dari suatu barisan bilangan dengan cara mengeneralisasi pola barisan sebelumnya. Suku ke empat = (23 x 2) + 1 = 47. Suku kelima = 20 : 2 = 10. Suku keenam = 10 : 2 = 5 . Tentukan angka satuan pada bilangan 3 100.
HaloMeigan E, kakak bantu jawab ya :) Suku ke-20 nya adalah 10. Barisan adalah daftar urutan bilangan dari kiri ke kanan yang mempunyai karakteristik atau pola tertentu. Barisan bilangan k, merpakan barisan bilangan yag suku-sukunya merupakan bilangan yang sama, yaitu k. Barisan bilangan asli merupakan barisan bilangan dimulai dari 1,2,3,4,
Diketahuisuku pertama dari barisan geometri adalah 5/2 dan suku ke-4 adalah 20. Top 9: Latihan Soal dan Pembahasan Barisan dan Deret Geometri Bagian 1 Maka suku ke-8 adalah 256.PendahuluanPola bilangan ganjil, contohnya : 1, 3, 5, 7, Rumus menentukan suku ke-n pada pola bilangan ganjil⇒ Uₙ = 2n - 1_____Pola bilangan genap
. – Dalam ilmu matematika, ada yang disebut dengan baris aritmatika. Barisan aritmatika adalah barisan bilangan dengan pola tertentu. Dilaporkan dari Khan Academy , dalam baris aritmatika selisih suku-suku yang secara berurutan selalu sama. Selisih suku-suku tersebut disebut sebagai beda dan dilambangkan dengan ''b". Untuk lebih memahami tentang barisan aritmatika, berikut adalah soal baris aritmatika dan pembahasannya!Soal 1 Suku pertama dan diketahui Jika suku pertama suatu baris aritmatika sama dengan 40 dan beda baris tersebut adalah 5, maka suku ke-10 baris tersebut sama dengan … Jawaban Suku pertama = a = 40 Beda = b = 5 Suku ke-10 = n10Maka, suku ke-10 dalam baris aritmatika tersebut dapat dicari menggunakan rumus Un = a + n - 1b Dilaporkan dari Math is Fun , n-1 digunakan karena pada suku pertama n1, beda b tidak digunakan. Selanjutnya, masukkan suku yang dicari n, suku pertama a, dan beda b ke dalam rumus sebagai berikut Un = a + n - 1b U10 = 40 + 10 - 15 = 40 + 9 × 5 = 40 + 45 = 85 Maka, suku ke-10 dari baris aritmatika bersuku pertama 40 dan beda 5 adalah 85. Baca juga Barisan Aritmatika
Mahasiswa/Alumni Universitas Galuh Ciamis12 November 2021 1914Halo Roy, jawaban untuk soal ini adalah dan Soal tersebut merupakan materi barisan aritmatika. Barisan Aritmatika Un adalah barisan bilangan yang memiliki pola yang tetap. Ingat! Rumus mencari suku ke-n atau Un Un = a + n-1b dengan Un = suku ke-n U1 = a = suku ke-1/ pertama n = banyak suku pada barisan aritmatika Rumus mencari beda b b = Un - Un-1 dengan b=beda Un = suku ke-n Un-1 = suku ke- n-1 Diketahui, Ditanyakan, suku ke-6, suku ke-10, dan suku ke-20 Dijawab, U1 = a = b = U2 - U1 b= - b = - 25 Mencari suku ke 6 Un = a + n-1b U6 = + 6-1 - 25 = 5 - 25 = -125 = - 125 = Mencari suku ke 10 Un = a + n-1b U10 = + 10-1 - 25 = 9 - 25 = -225 = -225 = Mencari suku ke 20 Un = a + n-1b U20 = + 20-1 - 25 = 19 - 25 = -475 = - 475 = Sehingga dapat disimpulkan bahwa, suku ke-6, suku ke-10, dan suku ke-20 berturut-turut adalah dan Terima kasih sudah bertanya, semoga bermanfaat. Terus gunakan Roboguru sebagai teman belajar kamu yaŸ˜Å
Barisan deret aritmatika geometri, Hmmm…Apa yang ada dalam pikiran teman-teman semua jika mendengar istilah barisan dan deret? Lalu apa juga yang langsung teman-teman pikirkan saat dengar aritmatika dan geometri?Kalau saya pribadi;Ketika dengar barisan saya langsung ingat koma ,.Ketika dengar deret saya langsung ingat tambah +.Ketika dengar aritmatika saya langsung ingat beda b.Ketika dengar geometri saya langsung ingat rasio r atau bagaimana dengan teman-teman? Apakah sudah terbayang?Jika belum, 4 poin yang sudah kak Hinda tuliskan di atas itulah ciri utama atau kata kunci dari pembahasan barisan dan deret, baik itu aritmatika maupun poin itu kemudian menjadi pembahasan yang cukup panjang dilengkapi dengan rumus-rumus yang akan kita bahas lengkap dalam kesempatan kali yakin, ketika kalian sampai di artikel ini, berarti kalian sedang mencari tahu lebih banyak tentang barisan dan deret. Baik itu aritmatika yang ditemukan oleh Carl Friedrich Gauss maupun geometri yang menurut beberapa sumber dikembangkan oleh Leonardo da Pisa.Entah itu ciri-cirinya, perbedaan barisan dan deret, rumusnya, atau bahkan hanya untuk tahu bagaimana contoh soal berikut penyelesaian juga yakin, sebelum membaca artikel ini, kalian semua sudah memiliki pengetahuan dasar tentang barisan dan deret. Atau paling tidak pernah tahu atau mendengar itu dari buku sekolah maupun sumber kita langsung saja ya!Materi lengkap rumus barisan aritmatika, deret aritmatika, barisan geometri, dan deret geometri + contoh soal dan jawabanKita akan bahas materinya satu-satu ya?1. Barisan AritmatikaPengertian barisan aritmatika adalah sebuah barisan bilangan yang memiliki selisih yang tetap atau konstan antara dua suku yang berurutan. Misal suku pertama dengan kedua, ketiga dengan keempat, lebih mudah dipahami, kak Hinda akan menuliskan secara umum dan rumus suku ke-nBarisan aritmatika memiliki bentuk yang umum. Sebagaimana saya tuliskan di atas, ciri utamanya adalah koma. Setidaknya demikianlah cara saya memahami dengan mudah dan simpel tentang barisan aritmatika umuma, a + b, a + 2b, a + 3b, …. , a + n – 1bKeterangana adalah suku pertama dari barisan adalah beda atau pertama disebut juga dengan U1Suku kedua disebut U2Suku ketiga disebut U3…. dan seterusnya sampaiSuku ke-n disebut UnDengan kata lain, barisan aritmatika bisa dituliskan sebagai berikut;U1, U2, U3, U4, … , Un = a, a + b, a + 2b, a + 3b, …. , a + n – 1bDari sini kita bisa melihat bahwaRumus suku ke-n dari sebuah barisan aritmatika adalah Un = a + n – 1bKeteranganUn adalah rumus suku ke-n barisan adalah suku pertama barisan aritmatika atau bisa ditulis U1b adalah bedaRumus bedaDengan ulasan di atas, kita dapat melihat;U2 – U1 = a + b – a = bU3 – U2 = a + 2b – a + b = bU4 – U3 = a + 3b – a + 2b = b…Beda = Un – Un-1 = a + n-1b – [a + n-2b] = a + bn – b – a – bn + 2b = bDengan demikian,Rumus beda adalahb = Un – Un-1Penjabaran a = U1Un = a + n – 1 bU1 = a + 1 – 1 bU1 = a + = aSuku tengahDalam barisan aritmatika, kita juga mengenal suku tengah yang dilambangkan dengan itu suku tengah?Pengertian suku tengah ini merujuk pada sebuah barisan aritmatika yang n-nya ganjil. Atau dengan kata lain banyaknya barisan aritmatikanya dengan begitu akan ada satu suku yang berada tepat di tengah dan membagi barisan aritmatika menjadi dua bagian yang 5, 9, 13, 172, 4, 6, 8, 10, 12, 14Dari dua contoh barisan aritmatika di atas, terlihat bahwa 9 dan 8 merupakan suku kita lihat bersama, bilangan 9 dalam barisan aritmatika pertama merupakan setengah dari penjumlahan suku-suku yang ada di kanan juga bilangan 8 di barisan aritmatika = 5 + 13. ½ = 1 + 17 . ½8 = 6 + 10 . ½ = 4 + 12 . ½ = 2 + 14 . ½Perhatikan pula bahwa, suku tengahnya berada pada t = 3 dan t = dengan kata lain;Rumus t bisa dituliskan di bawah ini;t = n + 1 2Pada contoh pertama, kita punya n = 5, suku tengahnya adalah suku = 5 + 1 2 = 6 2 = 3Pada contoh kedua, kita punya n = 7, suku tengahnya adalah suku = 7 + 1 2 = 8 2 = 4Sedangkan rumus umum suku tengah sendiri adalah;Rumus suku tengah Ut = a + Un/2t = n + 1 / 2dengana adalah suku pertaman > 1 dan ganjilContoh soal dan pembahasanBerikut ini adalah beberapa contoh soal yang bisa kak Hinda rangkum agar pemahaman tentang barisan aritmatika ini menjadi lebih mudah;Contoh 1Diketahui sebuah barisan aritmatika adalah sebagai berikut1, 2, 3, 4, 5, 6, 7, 8, …Tentukan suku pertama, beda, dan suku ke-n barisan aritmatika tersebut!PembahasanSuku pertama = U1 = a = 1Beda b = U2 – U1 = 2 – 1 = 1Un = a + n – 1bUn = 1 + n – 1.1Un = 1 + n – 1Un = nJadi, rumus suku ke-n dari barisan aritmatika di atas adalah nDalam contoh ini, U1 atau a adalah 1 dan beda b dalam barisan aritmatika ini adalah 2Diketahui sebuah barisan aritmatika adalah sebagai berikut3, 7, 11, 15, …Tentukan suku pertama, beda, dan suku ke-20!JawabanSuku pertama = U1 = a = 3Beda = U2 – U1 = 7 – 3 = 4Selanjutnya, untuk mencari suku ke-20 kita bisa memakai rumus suku ke-n;Un = a + n – 1 bU20 = 3 + 20 – 1. 4U20 = 3 + 19. 4U20 = 3 + 76U20 = 79Atau teman-teman bisa menghitung U20 dengan cara mencari rumus suku ke-n nya dulu seperti cara di bawah ini;Un = 3 + n – 1 4Un = 3 + 4n – 4Un = 4n – 1Kemudian baru masukkan 20 ke dalam rumus suku ke-n yang sudah didapatkan; dengan cara;U20 = 4. 20 -1U20 = 80 – 1U20 = 79Perlu diingat bahwa n adalah bilangan asli, tidak mungkin nol dan itu, kesalahan menghitung juga biasanya banyak dijumpai dalam pengerjaan soal barisan aritmatika yang kesalahannya adalah sebagai berikut;Un = a + n – 1 bU20 = 3 + 20 – 1. 4U20 = 3 + 19. 4Sampai di proses ini kadang banyak siswa yang menjumlahkan dulu. Padahal seharusnya perkalian harus didahulukan dibanding dengan penjumlahan. Kecuali jika ada 3 – mencari suku pertama dari Un yang sudah diketahuiDiketahui rumus suku ke-n barisan aritmatika adalahUn = 2n + 1Tentukan beda dan suku pertamanya!PenyelesaianDiketahui Un = 2n + 1, makaUn-1 = 2 n – 1 + 1Un-1 = 2n – 2 + 1Un-1 = 2n – 1Kemudian, ingat bahwa rumus beda adalahb = Un – Un-1b = 2n + 1 – 2n – 1b = 2n – 2n + 1 + 1b = 2Selanjutnya, cari suku pertamanya dengan memasukkan n = 1;Un = 2n + 1U1 = + 1U1 = 2 + 1U1 = 3Jadi, suku pertama dan beda dari barisan aritmatikanya adalah 3 dan aritmatika tersebut dapat ditulis sebagai berikut;3, 5, 7, 9, 11, …., 2n + 1Contoh 4 – suku tengahDiketahui sebuah barisan aritmatika adalah sebagai berikut;6, 10, 14, …, 46Tentukan suku tengah dan suku ke berapakah suku tengah tersebut!PembahasanDiketahui a = 6, b = 4, Un = 46, makaUt = a + Un / 2Ut = 6 + 46 / 2Ut = 52/2 = 26Kemudian, untuk mencari t, teman-teman bisa pakai rumus suku ke-n atau = a + n – 1 b, karena n = t maka Ut = a + t – 1 bUt = 6 + t – 1 4Ut = 6 + 4t – 426 = 4t + 24t = 26 – 24t = 24t = 24/4 = 6Atau teman-teman juga bisa pakai cara di bawah iniUn = a + n – 1 b46 = 6 + n – 1.446 = 6 + 4n – 44n = 46 – 24n = 44n = 11Kemudian masukkan dalam rumust = n + 1 / 2t = 11 + 1 / 2t = 12/2 = 6Hasilnya sama, bukan?Tips dan trik barisan aritmatika Ketika teman-teman diminta untuk mencari rumus suku ke-n dari sebuah barisan aritmatika. Langkah atau caranya adalahCarilah terlebih dahulu suku pertama dan angka dalam rumus suku ke-nKetika Anda diminta mencari suku ke-20, maka gantikan angka 20 pada bilangan n dari rumus yang Anda dapatkan tadi. Gantikan dengan bilangan lain sesuai dengan nilai n dalam jika teman-teman diminta untuk mencari nilai beda dan suku pertama dari sebuah rumus suku ke-n barisan aritmatika, maka langkahnya adalahCari rumus Un-1Kemudian masukkan ke rumus beda seperti biasaUntuk mencari suku pertama atau U1 bisa langsung dimasukkan dalam rumus suku ke-n yang diketahui dengan nilai n diganti jika teman-teman diminta untuk mencari nilai suku tengah dan nilai t, maka langkahnya adalahPakailah rumus Ut untuk menentukan suku untuk mencari t, teman-teman bisa mencari nilai n, kemudian dimasukkan dalam rumus t = n + 1 /2Lihat contoh di atas agar lebih jelas2. Deret aritmatikaDeret identik dengan penjumlahan, sementara aritmetika identik dengan beda. Demikian saya memahami deret aritmatika agar tidak tertukar dengan barisan aritmatika atau deret Hinda akan membahas tentang materi deret aritmatika ini secara bertahap. Selamat umum dan rumusSudah kakak jelaskan di awal bahwa deret identik dengan penjumlahan, sedangkan artimatika identik dengan dalam deret aritmatika ini hampir sama dengan barisan aritmatika, yaituBedaSuku pertama U1 = aSuku ke-nNamun karena ini penjumlahan, maka ada komponen lain, yakni mari kita kenali dulu bentuk umum dari deret aritmatikaBentuk umumU1 + U2 + U3 + … + Una + a + b + a + 2b + … + [a + n – 1 b]Dalam deret aritmatika kita juga mengenal Sn, yakni jumlah n suku pertama deret Sn adalahSn = n/2 a + UnSn = n/2 [2a + n – 1 b]DenganUn adalah rumus suku adalah jumlah n suku pertama dari deret adalah nilai dari beda atau adalah U1 atau suku pertama dalam barisan kalian lupa rumus a, b, dan Un bisa langsung lihat di ulasan barisan aritmatika sebelumnya ya?Rumusnya rumus SnSn = U1 + U2 + U3 + … + UnSn = a + a + b + a + 2b + … + [a + n – 1 b]Sn = a + a + b + a + 2b + … + UnSn = Un + Un – b + Un – 2b + … + a dibalik dari Un – sifat komutatifKemudian,Sn + Sn = [a + a + b + a + 2b + … + Un] + [Un + Un – b + Un – 2b + … + a]2Sn = a + Un + a + Un + … + a + Un —-> sebanyak n kali2Sn = n a + UnSn = [n a + Un ] / 2Sn = n/2 a + UnSn = n/2 {a + [a + n – 1 b] }Sn = n/2 [2a + n – 1 b]Contoh dan pembahasanBerikut adalah contoh soal dan jawaban deret aritmatikaContoh 1Diketahui sebuah deret aritmatika; 5 + 7 + 9 + 11 +…Tentukan rumus suku ke-n dan jumlah n suku pertamanya!PembahasanDiketahui a = 5, b = 2Un = a + n – 1bUn = 5 + n – 1 2Un = 5 + 2n – 2Un = 2n + 3Rumus jumlah n suku pertamanya adalahSn = [n a + Un ] / 2Sn = n 5 + 2n + 3 / 2Sn = 5n + 2n2 + 3n/2Sn = 2n2 + 8n /2Sn = n2 + 4nContoh 2Berikut adalah contoh kedua dalam materi deret aritmatika untuk mempermudah Anda dalam memahami materi iniDiketahui sebuah deret aritmatika4 + 5 + 6 + 7 + 8 + 9 +… ,Tentukan suku ke- 10 dan jumlah 10 suku pertama dari deret tersebut!PembahasanDiketahui, a = 4, b = 1. MakaSuku ke- 10 adalahUn = a + n – 1 bU10 = 4 + 10 – 1 .1U10 = 4 + = 13Jumlah 10 suku pertama adalahSn = n/2 a + UnS10 = 10/2 4 + 13S10 = 5 . 17S10 = 85Jadi, suku ke 10 deret tersebut adalah 13 dan jumlah 10 suku pertama deret aritmatika tersebut adalah dan trik deret aritmatika Ketika teman-teman diminta untuk mencari rumus jumlah n suku pertama deret aritmatika, begini langkahnyaCek nilai a dan bMasukkan dalam rumus suku ke-nCari jumlah n suku pertama deret teman-teman diminta untuk mencari suku ke-n dan n suku pertama deret aritmatika, maka langkahnyaCek nilai a dan bMasukkan nilai n yang diminta ke dalam rumus suku ke-n. Misal n = 10, menjadi U10Masukkan nilai n yang diminta di soal ke dalam rumus jumlah n suku pertama deret aritmatika. Misal n = 10, maka carilah S10Agar jelas, silakan lihat soal dan kuis deret aritmatikaAnda bisa mencoba mengerjakan deret berikut ini untuk mengasah kemampuan Anda;6 + 10 + 14 + 18 + 22 + …Silakan cari nilaiSuku pertamaBedaSuku ke-7Jumlah 7 suku pertama deret aritmatikaSuku ke-nJumlah n suku pertamanyaItulah materi deret aritmatika yang dapat kami sampaikan. Selanjutnya, kak Hinda akan mengajak teman-teman untuk membahas barisan dan deret geometri. Tapi jangan lupa baca juga Cara Menjumlahkan Deret Bilangan Berurut Tanpa Rumus Dengan Barisan geometriSebagaimana kak Hinda sebutkan di awal, barisan identik dengan koma, sedangkan geometri identik dengan rasio pembagi.Jadi, pembahasan kita nanti merupakan penjabaran dari materi barisan geometri yang sebenarnya sangat memahami materi ini, teman-teman harus paham dulu barisan aritmatika. Kenapa?Barisan aritmatika terbilang lebih sederhana karena berhubungan dengan operasi hitung dalam barisan geometri sedikit lebih rumit karena menggunakan operasi hitung pembagian dan bahkan dari itu, materi ini biasanya disampaikan di tingkat sekolah menengah atas SMA, MA Madrasah Aliyah, dan SMK Sekolah Menengah Kejuruan begitu, materi dasar barisan geometri ini kadang disinggung di bangku SMP. Hanya bagian dasarnya saja. Untuk SMA sederajat sudah materi yang lebih rumit Hinda akan membuat pembahasannya mudah dengan cara membaginya dalam beberapa poin. Yakni bentuk umum, rumus, penjelasan ringkas, dan contoh umum dan rumusPengertian barisan geometri adalah sebuah barisan bilangan yang memiliki rasio atau hasil bagi tetap antara dua suku barisan yang tempatnya berurutan. Misal suku kedua dengan pertama, suku ketiga dengan kedua, dan identik dengan rasio, dilambangkan dengan r. Barisan selalu pakai koma. Jadi, komponen dalam barisan geometri yang perlu diketahui adalahSuku pertama a = U1Rasio pembagi dilambangkan dengan rSuku ke-n UnDengan kata lain, dalam barisan geometri kita tidak mengenal beda b. Yang kita kenal adalah rasio r.Bentuk umum barisan geometria, ar, ar2, ar3, …, arn-1U1, U2, U3, U4, …UnDengan ulasan bentuk umum di atas, kita dapatkanRumus suku ke-n barisan geometriUn = arn-1 KeteranganUn adalah suku ke-na adalah suku pertama atau ditulis dengan U1r adalah rasio atau pembagiDari rumus Un di atas, kita bisa mendapatkanRumus rasio barisan geometrir = Un / Un-1 Berikut adalah penjabarannyar = U2 / U1r = U3 / U2r = U4 / U3….r = Un / Un-1dan soal dan pembahasanBerikut adalah beberapa contoh soal yang sengaja kak Hinda tulis secara bertahap tingkat kesulitannya agar teman-teman bisa mudah 1Diketahui sebuah barisan bilangan berikut2, 4, 8, 16, 32, …Tentukan rasio dan suku ke-n barisan tersebut!PembahasanDari barisan tersebut, informasi yang kita dapat adalaha = 2U2 = 4Artinyar = U2 / U1r = 4/2 = 2Selanjutnya, suku ke-n atau Un adalahUn = arn-1Un = 2 . 2n-1Un = 2 . 2n/2 ——–> Konsep eksponensialUn = 2nContoh 2Jika diketahui, Un = 3n ,Sebutkan 5 suku pertama dari barisan geometri tersebut dan tentukan rasio serta suku pertamanya!JawabanDiketahui Un = 3nJadi, untuk mencari 5 suku pertama dari barisan, kita tinggal memasukkan ke dalam rumus suku ke-n yang diketahui = a = 31 = 3U2 = 32 = 9U3 = 33 = 27U4 = 34 = 81U5 = 35 = 243Lima suku pertama dalam barisan geometri ini adalah 3, 9, 27, 81, 243Rasio r = U2/U1r = 9/3r = 3Atau teman-teman bisa mencari rasio dengan cara berikut ini;r = Un/Un-1r = 3n / 3n-1r = 3n 3n/3 ———–> Konsep eksponensialr = 3n x 3/3nr = 3Perbedaan barisan geometri dengan barisan aritmatikaPerbedaan antara barisan geometri dengan barisan aritmatika adalah pada pembedanya. Jika di barisan aritmatika ada beda selisih, di barisan geometri ada rasio hasil bagi. Inilah kata contohnya;6, 12, 18, 24, … —–> Barisan aritmatika4, 20, 100, 500, … ——> Barisan geometriBagaimana? Mudah, bukan?Latihan soal barisan geometriJika Un = suku pertama, suku ke-12, dan rasionya!Silakan menyelesaikan soal di atas dengan panduan materi barisan geometri di atas. Lakukan secara rutin agar dan trik barisan geometri Kak Hinda akan memberikan tips dan trik untuk mengerjakan latihan soal di atas. Berikut langkahnyaUntuk mencari suku pertama jika rumus suku ke-n barisan geometri sudah diketahui adalah tinggal mengganti n dengan bilangan juga dengan mencari nilai suku kedua belas, tinggal mengganti n dengan bilangan mencari rasio, yang diperlukan adalah dua suku yang berurutan. Jadi, kalau sudah ada U1, kita tinggal mencari U2. Kemudian dicari hasil tambahan, untuk mengerjakan barisan geometri ini akan sangat mudah jika teman-teman paham materi eksponensial. Jadi, buka kembali bukunya di materi eksponensial ya?4. Deret geometriMateri deret geometri merupakan keberlanjutan dari materi barisan geometri. Ada yang menyebut deret geometri sebagai deret mendasar barisan geometri dengan deret geometri adalah tanda penjumlahan. Dalam deret, kita akan diajak untuk menemukan hasil dari penjumlahan umum dan rumusSimpelnya, komponen pembentuk deret geometri ini sama dengan barisan geometri, yaituSuku pertama aRasio r – hasil bagiSuku ke-n UnSn jumlah n suku pertamaBentuk umum deret geometri a + ar + ar2 + ar3 + … + arn-1U1 + U2 + U3 + U4 + … + UnUntuk rumus-rumus a, r, dan Un, sama dengan rumus pada barisan geometri. Untuk di deret, kita mengenal = U1 + U2 + U3 + U4 + … + UnRumus jumlah n suku pertama deret geometri Sn = a rn – 1 / r – 1 , untuk r > 1Sn = a 1 – rn / 1 – r, untuk r 1, maka digunakan rumusSn = a rn – 1 / r – 1S6 = 3 . 36 – 1 / 3 – 1S6 = 3. 729 – 1 / 2S6 = 3. 728 / 2S6 = 2184 / 2 = 1092Untuk mengetahui rumus Sn, gunakan caraSn = a rn – 1 / r – 1Sn = 3 3n – 1 / 3 – 1Sn = 3 3n – 1 / 2Sn = 3n+1 – 3 /2Latihan soal deret GeometriBerikut adalah soal yang bisa coba Anda kerjakan. Sesuaikan soal di bawah ini dengan informasi di + 2 + 4 + 8 + …5 + 25 + 125 + …64 + 32 + 16 + 8 + 4 + 2 + 1 + ½ + ….Tips dan trik deret geometri Berikut adalah beberapa tips dan trik mengerjakan soal deret geometri berkaca dari pengalaman agar tidak banyak kekeliruanKetahui dulu berapa r tahu rasionya, pastikan gunakan rumus yang utama rumusnya terletak pada bagian penyebut yang biasanya tidak boleh negatif. Kalau r lebih besar dari 1, maka r-1. Kalau r kurang dari 1, maka 1 – r. Silakan dilihat lupa menentukan nilai suku betul materi eksponensial atau perpangkatan akan sangat berlatih Geometri Tak HinggaBentuk umum deret geometri tak hingga adalaha + ar + ar2 + ar3 +…Keterangana adalah suku pertama, U1r adalah rasioDeret geometri tak hingga terbagi menjadi dua, yakni konvergen dan divergen. Berikut adalah penjelasannyaDeret geometri tak hingga konvergenAdalah sebuah deret yang memusat atau menuju ke satu titik tertentu konvergen. Kekonvergenan deret geometri tak hingga bisa dilihat dari geometri tak hingga dikatakan konvergen jika dan hanya jika harga mutlak r kurang dari 1. Atau ditulisKonvergen r r ≥ 1Ketika deret geometri tak hingga itu divergen, maka dia tidak memiliki r = 1, maka deret geometri tak hingganya r > 1, maka suku-suku dalam deret geometri tak hingganya cenderung membesar dan perbedaan konvergen dan divergen melalui contohBayangkan jika teman-teman diminta menghitung jumlah bilangan yang semakin membesar atau semakin mengecil ini ya?6 + 36 + 216 + … contoh deret geometri tak hingga divergen6 + 2 + 2/3 + 2/9 + … contoh deret geometri tak hingga konvergenDeret geometri tak hingga yang memiliki jumlah adalah yang deret geometri tak hinggaS∞ = a / 1 – rDengan syarat -1 memenuhi syarat konvergen karena 1Sn = a 1 – rn / 1 – r, untuk r ingat suku tengahU3 = 8 + 14 / 2U3 = 22 /2 = 11Kemudian, kita cari = U3 – U2b = 11 – 8 = 3Karena b = 3, maka a = 8 – 3 = 5Jadi, barisannya adalah5, 8, 11, 14, …, 23Selanjutnya, kita akan mencari n dengan rumus;Un = a + n-1 b23 = 5 + n-1 323 = 5 + 3n – 323 = 2 + 3n pindah ruas3n = 23 – 23n = 21n = 7Dari sini, dapat diketahui bahwa banyaknya suku dalam barisan tersebut adalah 7 dan 23 adalah nilai dari suku ke-7 dari barisan soal 2 – Barisan aritmetika SMPB SNMPTNContoh berikut merupakan jenis soal yang sering muncul di SMPB, SNAMPTN, SBMPTN, USM, Ujian Masuk, UMPTN, SNMPTN, atau saringan masuk perguruan tinggi negeri dan berikut adalah soal barisan aritmetika yang sebenarnya sederhana. Terlihat rumit karena angkanya yang cenderung bilangan-bilangan bulat antara 250 dan yang habis dibagi 7 adalah… pilih salah satu jawabanA. / pembahasanBilangan bulat pertama yang habis dibagi 7 setelah 250 adalah 252, yakni menghasilkan angka angka terakhirnya sebelum 1000 adalah 994, yakni menghasilkan angka barisan aritmetikanya adalah;252, 259, 266, …., 994Jadi, a = 252Sedangkan suku ke-n adalah 994, makaUn = a + n – 1 bUn = 252 + n – 1 7994 = 252 + 7n – 77n = 994 – 252 +77n = 749n = 749/7n = 107Kemudian,Sn = ½ n a + Un ,MakaSn = ½ . 107 252 + 994Sn = 53,5 . 1246Sn = demikian, jumlah bilangan-bilangan bulat antara 250 dan adalah Jawaban BContoh soal 3Soal di bawah ini juga advanced dan biasa muncul di ujian saringan masuk perguruan tinggi;Suku ke-n suatu deret aritmatika adalah Un = 3n – rumus jumlah n suku pertama deret tersebut;PembahasanDiketahui Un = 3n – 5, makaa = U1a = 3 . 1 – 5a = – 2Sehingga rumus jumlah n suku pertama,Sn = ½ n a + UnSn = ½ n -2 + 3n – 5Sn = ½ n -2 + 3n – 5Sn = ½ n 3n – 7Sn = n/2 3n -7Soal ini lebih sederhana tapi sering sekali muncul di SPMB. Saat mengerjakan soal jenis ini lihat pilihan gandanya teman-teman bisa menyelesaikan sesuai dengan yang diinginkan soal di pilihan gandanya. Apakah harus diselesaikan sampai bentuk n2 atau informasi tentang materi barisan dan deret aritmatika, barisan dan deret geometri, contoh soal dan pembahasannya. Semoga informasi dari kak Hinda ini bermanfaat ya?Bacalah artikel ini sesuai dengan materi yang sedang teman-teman tempuh di sekolah ya? Agar tidak lupa share jika bermanfaat. Selamat –
Artikel ini membahas tentang rumus suku ke n. Pelajari cara menghitung rumus rumus suku ke n disertai dengan contoh soal dan pembahasannya. Rumus suku ke n cara nyarinya gimana sih? Gampang banget temen-temen, tapi sebelum ngejawab pertanyaan kalian, sebenernya kalian lagi nyari suku ke n barisan aritmatika atau barisan geometri nih? Harus dipastiin dulu ya guys, biar jawabannya juga bener. Jangan sampe lu udah cape-cape ngitung ternyata lu pake rumus suku ke n yang salah jenis barisannya… Rugi waktu, energi dan kesehatan mental nanti. Jadi rumus kita bakalan belajari rumus suku ke-n barisan aritmatika dan geometri, dibaca sampai habis ya artikelnya! Sebelum kita lompat ke rumus gua ada sedikit cerita menarik yang mau gua share. Salah satu matematikawan terkenal di dunia, Carl Friedrich Gauss dikenal berbakat dari kecil. Cerita yang paling terkenalnya itu, suatu ketika saat Gauss masih SD, gurunya minta kelasnya untuk menjumlahkan semua angka dari 1 sampai 100. Guru itu terkejut karena Gauss abis mikir berapa saat langsung menulis jawabannya, yaitu 5050. Dok Depositphotos Nah guys, rahasia Gauss itu terletak di otak penuh aritmatika dia. Tentu aja nama kita bukan Gauss, tapi semoga dari rumus suku ke n yang kita bakalan pelajarin kali ini, lu pada bisa jadi lebih pinter kaya Gauss ye! Rumus Suku ke n Barisan AritmatikaRumus Suku ke n Barisan GeometriContoh Soal dan Pembahasan Oke pertama-tama kita bakalan bahas tentang rumus suku ke n dari barisan aritmatika. Singkat cerita aja, barisan aritmatika ini adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui penjumlahan atau pengurangan dengan suatu bilangan. Berikut gua cantumin nih rumus suku ke n barisan aritmatika. Un = a + n – 1 b Simbol Un di sini mewakilkan suku ke n, sementara simbol a mewakilkan suku pertama atau awal dari barisan aritmatika. Simbol b ini ngewakilin selisih dari nilai suku-suku yang berdekatan. Gua mau kasih tips lagi nih buat lebih gampangin rumus suku ke n yang barusan gua kasih. Un = a + n – 1 b Un = a + bn – b Un = bn + a – b Rumus manapun yang temen-temen pilih buat pakai bakalan ngehasilin jawaban yang sama ya! Yang barusan gua kasih biar lebih cepet aja lu pada nyarinya kok. Biar pada yakin nih gua kasih contoh dulu sedikit Barisan Aritmatika 5, 9, 13, 17, … Pakai rumus yang pertama gua kasih Un = a + n – 1 b Un = 5 + n – 1 4 Un = 5 + 4n – 1 Un = 4n + 1 Pakai rumus yang kedua gua kasih Un = bn + a – b Un = 4n + 5 – 4 Un = 4n + 1 Rumus Suku ke n Barisan Geometri Sekarang kita loncat ke rumus suku ke n di barisan geometri. Barisan geometri ini adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan. Intinya ya aritmatika berselisih penambahan dan pengurangan, sementara barisan geometri melalui perkalian. Rumusnya juga sedikit berbeda nih guys, yaitu Simbol-simbol di sini sama aja guys seperti penjelasan yang di rumus suku ke n barisan aritmatika sebelumnya. Yang baru itu adalah simbol r yang melambangkan perbandingan atau rasio antara nilai suku-suku yang berdekatan selalu sama. Sekarang kita harus ngitung berhubungan dengan perkalian. Karena hampir mirip gua kasih contoh lagi aja ya biar enak mahaminnya. Barisan Geometri 3, 6, 12, 24, … Un = arn-1 Un = 3 x 2n-1 Contoh Soal dan Pembahasan Contoh Soal 1 Apa rumus suku ke-n dari barisan 6, 10, 14, 18, … ? Pembahasan Diketahui a = 6 b = 4 Ditanya Un Jawab Un = a + n – 1 b Un = 6 + n – 1 4 Un = 6 + 4n – 4 Un = 4n + 2 Jadi rumus suku ke n pada barisan ini adalah 4n + 2 Contoh Soal 2 Diketahui barisan geometri 2, 6, 18, …. Berapakah nilai suku ke-6? Pembahasan Diketahui a = 2 r = 3 Ditanya U6 Jawab U6 = U6 = U6 = 2 x 243 U6 = 486 Jadi nilai suku ke-6 pada barisan geometri tersebut adalah 486 Contoh Soal 3 Terdapat barisan aritmatika 12, 5, -2, -9, … Berapakah nilai suku ke-7 pada barisan tersebut? Pembahasan Diketahui a = 12 b = -7 Ditanya U7 Jawab U7 = bn + a – b U7 = -49 + 19 U7 = -30 Jadi nilai suku ke-7 pada barisan aritmatika tersebut adalah -30 Jadi temen-temen, itulah cara mencari rumus suku ke n dengan gampang yang bisa kalian manfaatin untuk ngerjain soal ujian matematika! Gimana pendapat kalian? Gampang banget, gampang aja atau cukup sulit nih? Jangan lupa tuliskan pikiran kalian di komentar ya! Untuk yang masih pada ambis dan mau belajar lebih banyak dari Zenius, bisa banget dicek materi-materi berikut ini yang masih berhubungan ke baris-berbaris! Materi – Baris dan Deret Barisan dan Deret Geometri Rumus, Contoh Soal, dan Pembahasan Lengkap Barisan dan Deret Aritmatika Rumus, Contoh Soal dan Pembahasan Lengkap Nah, nggak cuma Matematika, elo juga bisa mempelajari mata pelajaran lainnya dengan berlangganan paket belajar Zenius! Klik gambar di bawah ini ya untuk pengalaman belajar yang lebih asik! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga!
cara mencari suku ke 20